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Current macroscopic theories of two-phase flow in porous media are based on the
extended Darcy’s law and an algebraic relationship between capillary pressure and
saturation. Both of these equations have been challenged in recent years, primarily
based on theoretical works using a thermodynamic approach, which have led to new
governing equations for two-phase flow in porous media. In these equations, new
terms appear related to the fluid–fluid interfacial area and non-equilibrium capillarity
effects. Although there has been a growing number of experimental works aimed at
investigating the new equations, a full study of their significance has been difficult as
some quantities are hard to measure and experiments are costly and time-consuming.
In this regard, pore-scale computational tools can play a valuable role. In this paper,
we develop a new dynamic pore-network simulator for two-phase flow in porous
media, called DYPOSIT. Using this tool, we investigate macroscopic relationships
among average capillary pressure, average phase pressures, saturation and specific
interfacial area. We provide evidence that at macroscale, average capillary pressure–
saturation–interfacial area points fall on a single surface regardless of flow conditions
and fluid properties. We demonstrate that the traditional capillary pressure–saturation
relationship is not valid under dynamic conditions, as predicted by the theory. Instead,
one has to employ the non-equilibrium capillary theory, according to which the fluids
pressure difference is a function of the time rate of saturation change. We study the
behaviour of non-equilibrium capillarity coefficient, specific interfacial area, and its
production rate versus saturation and viscosity ratio.

A major feature of our pore-network model is a new computational algorithm,
which considers capillary diffusion. Pressure field is calculated for each fluid separately,
and saturation is computed in a semi-implicit way. This provides more numerical
stability, compared with previous models, especially for unfavourable viscosity ratios
and small capillary number values.

1. Introduction
1.1. Theories of two-phase flow including interfacial area

Understanding the physics of multiphase flow in porous media is important in many
fields such as hydrogeology, reservoir engineering, biomechanical engineering, fuel
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cells, and other industrial applications. Current theories of multiphase flow are based
on Darcy’s law, which assumes that the only driving forces for flow of each fluid
are the gravity and the gradient in fluid pressure. The resisting force is assumed to
be linearly proportional to the relative fluid velocity with respect to the solid. This
results in a linear relationship between the flow velocity and driving forces. While
these assumptions are reasonable for single-phase flow, one may expect many other
factors to affect the balance of forces in the case of multiphase flow. Among these
are interfacial forces that govern the distribution of interfaces in the porous medium.
In fact, through the application of rational thermodynamics, Hassanizadeh & Gray
(1990, 1993a) developed a theory of two-phase flow in which interfacial areas were
introduced as separate thermodynamic entities, possessing mass, momentum and
energy. They derived momentum balance equations not only for phases but also for
interfaces, and macroscale effects of interfacial forces were explicitly included. They
derived the following extended form of Darcy’s law in which gradients of saturations
and specific interfacial area appeared as driving forces:

vα,s = −Kα · (∇P α − ρα g − Ωαa∇anw − ΩαS∇Sα)/µα, α = w, n, (1.1)

where Kα is an α-phase permeability tensor, Ωαa and ΩαS represent material
properties, vα,s denotes relative velocity of fluid phase α with respect to the solid, g is
gravity vector, anw is the specific area of fluid–fluid interfaces (amount of interfacial
area per unit volume of the porous medium) and P α , ρα , Sα , and µα are pressure, mass
density, saturation and viscosity of the α-phase. The superscripts w and n designate
wetting and non-wetting phases, respectively. Hassanizadeh & Gray (1990, 1993a)
also obtained the following equation for the average velocity of fluid–fluid interfaces:

wnw ,s = −Knw · [∇ (anwσ nw ) + Ωnw ∇Sw], (1.2)

where Knw is a permeability tensor for nw-interfaces, Ωnw represents a material
property, wnw ,s denotes the relative macroscopic velocity of fluid–fluid interfaces with
respect to the solid, and σ nw is the macro-scale interfacial tension. These equations
may be seen as the truly extended forms of Darcy’s law, not only for a phase but also
for an interface. They must be supplemented with the following equations of balance
of volume for phase saturations and specific interfacial area (assuming incompressible
phases and constant mass density for interfaces):

ϕ
∂Sα

∂t
+ ∇ · vα = 0, α = w, n, (1.3)

∂anw

∂t
+ ∇ · (anwwnw ) = Enw , (1.4)

where ϕ is porosity, vα and wnw denote average velocities of α-phase and nw-interfaces,
respectively, and Enw is the net rate of production of nw-interfaces. It is proposed
that Enw should depend on saturation and its time rate of change. However, so far
there has been no study of this dependence.

Another central equation in theories of two-phase flow is the so-called capillary
pressure–saturation relationship, which is commonly written as

P n − P w = P c(Sw). (1.5)

In fact, there are two major assumptions in this equation: capillary pressure is a
function of wetting phase saturation only, and fluids pressure difference is equal
to capillary pressure (at all times and under all conditions). Regarding the first
assumption, it is known that the capillary pressure–saturation relationship is not
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unique and, even though it is obtained under equilibrium conditions, it is a function
of the history of fluids movements. In fact, it depends not only on the volume fraction
of each phase but also on their microscale distribution. Therefore, one would expect
capillary pressure to depend also on the interfacial curvature and/or specific interfacial
area. Hassanizadeh & Gray (1993b) have suggested that the non-uniqueness in the
capillary pressure–saturation relationship is indeed due to the absence of specific
interfacial area, and they proposed the following equation for capillary pressure:

P c(Sw) = P c(Sw, anw ). (1.6)

A number of computational and experimental works have shown that under a wide
range of drainage and imbibition histories, P c–Sw–anw surfaces more or less coincide.
This means that inclusion of anw leads to the removal or significant reduction of
hysteresis in capillary pressure versus saturation relationship. In other words, a unique
P c–Sw–anw surface may exist (e.g. Reeves & Celia 1996; Cheng, Pyrak-Nolte & Nolte
2004; Joekar-Niasar, Hassanizadeh & Leijnse 2008; Joekar-Niasar et al. 2009, 2010;
Porter, Schaap & Wildenschild 2009).

Regarding the second assumption underlying (1.5), it is now an established fact
that P n − P w is equal to capillary pressure but only under equilibrium conditions
(see Hassanizadeh, Celia & Dahle 2002 for an extended review of experimental
evidences). For non-equilibrium situations, the following equation for the difference
in fluid pressures has been suggested (Stauffer 1978; Kalaydjian & Marle 1987;
Hassanizadeh & Gray 1990):

P n − P w = P c − τ
∂Sw

∂t
, (1.7)

where τ , a non-equilibrium capillarity coefficient, is a material property that may still
be a function of saturation.

Recently, Niessner & Hassanizadeh (2008) have set up a numerical model based
on (1.1)–(1.4), (1.6) and (1.7). They have shown that the extended model can properly
capture physical processes such as capillary hysteresis. However, much needs to be
done for finding ways of studying various terms in these equations and gaining insight
in the interplay of various effects.

1.2. Dynamic pore-network models for two-phase flow

Pore-network models can be divided into quasi-static and dynamic ones. Quasi-static
pore-network models, which have been used extensively, simulate only equilibrium
states of drainage and imbibition processes without solving the pressure field (see e.g.
Fatt 1956; Reeves & Celia 1996; Held & Celia 2001; Blunt et al. 2002; Valvatne &
Blunt 2004; Joekar-Niasar et al. 2008, 2009). However, the dynamic pore-network
model can simulate transient behaviour of flow with time.

Among different computational methods for simulating transient behaviour of two-
phase flow in porous media, dynamic pore-network modelling has been extensively
used as an upscaling tool, as it is relatively simple and computationally less demanding
than the other computational methods. For example, the lattice Boltzmann (LB)
method, which solves the Navier–Stokes equation, is computationally too expensive
and memory-demanding compared with dynamic pore-network models, which usually
solve a simplified form of the momentum equation such as Stokes equation. For
instance, Porter et al. (2009) have recently used the LB method to simulate air–
water flow in glass beads with physical domain size of less than 500 pores, which was
discretized into 207×207×166 voxels. At a flux of 0.00008 mu ts−1 (mass unit per time
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step), approximately 50 000 ts were required to obtain only a 5 % change in saturation,
which took about 1.25 days to run on four AMD64 CPU (2.8 GHz) machines in
parallel. Roughly speaking, for their given specifications of domain and fluids, a
full drainage simulation would take more than 100 days with a single processor. In
another study, Pan, Hilpert & Miller (2004) have stated that computational limitations
are of great concern when applying LB simulations for multiphase porous medium
systems, even using large-scale parallel computing. They could not afford to simulate
domains with sizes close to a representative elementary volume (REV). The advantage
of the LB method, however, is that it can solve equations in an arbitrary pore space
geometry and topology without simplification. However, in pore-network modelling,
the porous medium should be idealized to some simple geometries so that essential
features are adequately represented (Celia, Reeves & Ferrand 1995). This idealization
can lead to loss of geometrical and topological information. Also, information on
temporal changes within a single pore in pore-network models is not as detailed as
in LB simulations. Nevertheless, simplifications in pore-network modelling allow us
to simulate much larger domains and with much less computational effort; this is a
major advantage.

The first dynamic pore-network model reported in the literature was developed by
Koplik & Lasseter (1985), who simulated dynamics of two-phase imbibition process
in a two-dimensional unstructured pore-network model with circular cross-sections.
Later, several dynamic pore-network models were developed for various applications,
such as simulating two-phase drainage (see e.g. Aker et al. 1998a; Dahle & Celia
1999; Nordhaug, Celia & Dahle 2003; Al-Gharbi & Blunt 2005; Gielen et al. 2005),
imbibition (see e.g. Koplik & Lasseter 1985; Hughes & Blunt 2000; Thompson 2002),
evaporation (e.g. Prat 2002), three-phase flow (see e.g. Pereira et al. 1996) and ganglia
movement (see e.g. Dias & Payatakes 1986a ,b; Constantinides & Payatakes 1996). Of
notable significance have been the models developed by Payatakes and co-workers
(see e.g. Dias & Payatakes 1986a ,b; Constantinides & Payatakes 1996), which can
simulate ganglia displacement.

Dynamics of two-phase flow during drainage have been studied in several works.
Aker et al. (1998a), Aker, Maloy & Hansen (1998b) and Van der Marck, Matsuura &
Glas (1997) studied pressure field evolution with time for a range of viscosity ratios
and capillary numbers during drainage. Capillary number (Ca) is traditionally defined
as the ratio of viscous forces of the invading phase to capillary forces ((µinvqinv )/σ

nw )
and the viscosity ratio is the ratio of viscosity of invading fluid to that of the
receding fluid. Dahle & Celia (1999) developed an IMPES-type (implicit pressure,
explicit saturation) algorithm to explicitly model the dynamics of fluid–fluid interfaces
and also pressure field evolution with time for favourable viscosity ratios. Singh &
Mohanty (2003) as well as Al-Gharbi & Blunt (2005) studied the effect of capillary
number on residual water saturation during drainage for constant injection rate at
the boundaries. They also investigated the fractional flow behaviour for different
flow rates as did Knudsen & Hansen (2002) and Knudsen, Aker & Hansen (2002).
Mogensen & Stenby (1998) developed an angular-shape pore-network model to study
dynamics of imbibition under the effect of flow rate, viscosity ratio, aspect ratio and
coordination number.

Thompson (2002) developed a dynamic pore-network model to investigate
imbibition process in fibrous material for water–air system (favourable viscosity
ratio). He solved pressure fields for each phase separately, including local capillary
pressure. However, his model failed to simulate capillary-dominated conditions.
Payatakes and co-workers studied dynamics of oil ganglia as well as dependency
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of relative permeabilities curves on the capillary number and viscosity ratio in several
publications (Payatakes 1982; Dias & Payatakes 1986a ,b; Constantinides & Payatakes
1991, 1996). Nguyen et al. (2006) employed a dynamic pore-network model to study
the effect of flow rate on snap-off during imbibition. They also showed dependency
of relative permeability on flow rate as did Avraam & Payatakes (1995a).

1.3. Features and objectives

The focus of this work is twofold. The major goal is to investigate theories for two-
phase flow in porous media including interfacial area and the side goal is to present
a new numerical algorithm for two-phase dynamic pore-network modelling.

1.3.1. Investigation of theories for two-phase flow

In the extended theories of two-phase flow in porous media, there are new variables
and parameters, which are experimentally difficult to be investigated. Major objectives
of this work are as follows: (i) investigation of uniqueness of (1.6) under equilibrium
and non-equilibrium conditions during drainage; (ii) investigation of the validity of
(1.7); (iii) proposing an explicit formula for the dependence of the interfacial area
production term (in (1.4)) on saturation and its time rate of change.

Hassanizadeh & Gray (1993b) state that the P c–Sw–anw relationship is supposed to
be an intrinsic property of the fluids–solid system and valid under all thermodynamic
conditions. The latter issue has not yet been investigated as all measurements of
the P c–Sw–anw relationship have been carried out under equilibrium conditions.
So, one goal of this paper is to determine specific interfacial area, average capillary
pressure, and saturation under various dynamic conditions as well as quasi-equilibrium
situation, albeit for drainage only, and determine whether all data points fall on a
single anw–P c–Sw surface.

Equation (1.7) has been the subject of many studies in recent years, both
computationally (see e.g. Dahle, Celia & Hassanizadeh 2005; Gielen et al. 2005;
Manthey, Hassanizadeh & Helmig 2005; Das, Mirzaei & Widdows 2006) and
experimentally (see e.g. Hassanizadeh, Oung & Manthey 2004; Oung, Hassanizadeh &
Bezuijen 2005; O’Carroll, Phelan & Abriola 2005). Nevertheless, there are still open
questions regarding the dependency of τ on various factors. In this paper, we
investigate the dependency of τ on saturation as well as fluids viscosity ratio.

Regarding (1.4), although there has been considerable progress in recent years in
finding ways of measuring specific interfacial area (see e.g. Brusseau, Popovicova &
Silva 1997; Costanza-Robinson & Brusseau 2002; Cheng et al. 2004; Culligan et al.
2004, 2006; Chen & Kibbey 2006; Brusseau et al. 2006; Chen et al. 2007), there is as
yet no experimental (or computational) study of the interface production term. One of
the goals of this paper is to study the dynamics of fluid–fluid interfaces and to provide
insight into the dependence of this production term on other primary variables. In
particular, the dependence of Enw on saturation and its time rate of change and
viscosity ratio will be studied. This term is very important because it prescribes the
appearance and disappearance of interfaces as the two-phase flow occurs.

1.3.2. Computational improvement of two-phase dynamic pore-network modelling

Despite the fact that numerous dynamic pore-network models have been proposed
over the years, the quasi-static models have remained dominant, largely because of
computational tractability. In particular, the strong nonlinearity at the pore scale
causes severe stability problemsin dynamic pore-network models. In this paper, we
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propose a computational algorithm, which is different from the previous dynamic
pore-network models, in the following respects.

(a) Similar to Thompson (2002), and in contrast to all other dynamic pore-network
models, we assign a separate pressure field to each phase within both pore bodies
and pore throats, and include local capillary pressures in pore bodies. We include a
snap-off criterion to account for the effect of pore geometry on flow.

(b) The computational algorithm for saturation update is improved in order to have
numerical stability in simulations even for a capillary-dominated flow. A semi-implicit
approach is used in the saturation update. Thus, the resulting set of equations for fluid
pressures contain both advection-type terms (corresponding to viscous forces) and
diffusion-type terms (corresponding to capillary forces). This gives more versatility
to our formulation so that competition between viscous forces and capillary forces
is properly modelled. We will show that in contrast to previous studies (see e.g.
Thompson 2002; Al-Gharbi & Blunt 2005), we can obtain full consistency between
fluid occupancy at equilibrium resulting from quasi-static simulations and dynamic
simulations for the same boundary conditions.

(c) We significantly improve computational efficiency in pressure field calculations.
Using total pressure definition (phase pressures weighted with saturation), calculation
of phase pressures is done in a cheaper way compared with previous dynamic pore-
network models. In addition, the model has been tested for both favourable and
unfavourable viscosity ratios, which is numerically stable.

(d ) Tracking fluid–fluid interfaces in pore throats is computationally expensive.
Allocating zero filling time for pore throats allows us to model a much larger domain.
On the other hand, we consider infinite conductance (zero flow resistance) in pore
bodies.

2. Classification of dynamic pore-network models
Dynamic pore-network models differ among themselves in three main features:

network structure, geometry of the elements, and computational algorithm for solving
the pressure field. A brief description of these features in various dynamic pore-
network models developed so far is given in this section.

2.1. Network structure

The network structure is characterized by the positioning of nodes and the number
and orientation of links. If the nodes are positioned at the vertices of a regular lattice,
the network is referred to as a ‘structured’ one, and otherwise it is ‘unstructured’.
If all nodes have the same number of links connected, the networked is ‘isotropic’,
and otherwise it is ‘anisotropic’. Dynamic pore-network models developed to date are
mostly structured and isotropic. However there are some cases that are structured
and anisotropic (e.g. Mogensen & Stenby 1998), unstructured and isotropic (e.g. King
1987; Blunt & King 1991), and unstructured and anisotropic (e.g. Koplik & Lasseter
1985; Thompson 2002).

2.2. Geometry of the elements

Conventional pore-network models consist of pore bodies, which are connected to
each other by pore throats. The geometry of pore-network models can be studied
based on two different aspects of these network elements: volumes and cross-sectional
shapes assigned to them.
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2.2.1. Volumes assigned to elements

In this regard, there are three different types of network models as described
below.

(i) Pore bodies have volume but no resistance; pore throats have negligible volume
but offer resistance to flow. This assumption will help to save computation time and
memory in simulations, since it is not necessary to track interfaces within pore throats.
Also, pressure drop within pore bodies can be neglected so that a single pressure
value can be assigned to (each fluid within) a pore body. Examples are the works by
Blunt & King (1990) and Gielen et al. (2005).

(ii) Both pore bodies and pore throats have volume and resistance. Almost none of
the dynamic pore-network models reported in the literature correspond to this case.
The only exceptions to our knowledge are Mogensen & Stenby (1998) and Singh &
Mohanty (2003). However, they have not shown gains of their models compared with
previous ones.

(iii) A pore body and a pore throat are combined into one element that has both
volume and resistance. Combined pore throat–pore body elements may have a varying
cross-section. No specific properties, such as volume and resistance, are assigned to the
connection points. This structure has been used in pore-network models of Payatakes
and co-workers (see e.g. Dias & Payatakes 1986a ,b; Valvanides, Constantinides &
Payatakes 1998) as well as in works by Aker et al. (1998a,b), Dahle & Celia (1999),
Knudsen & Hansen (2002), Knudsen et al. (2002) and Al-Gharbi & Blunt (2005),
among others.

2.2.2. Geometry of elements, cross-section

The geometry chosen for pore bodies and pore throats has consequences for
the computational algorithm. Because of the significant simplicity of circular cross-
sections, most dynamic network models have a circular cross-section. However, there
are a few models with angular cross-sections. Valvanides et al. (1998) and Al-Gharbi &
Blunt (2005) have assumed triangular cross-sections, whereas Mogensen & Stenby
(1998), Hughes & Blunt (2000), Singh & Mohanty (2003) and Gielen et al. (2005)
have assumed cubic pore bodies and parallelepiped pore throats. Pereira et al. (1996),
Van der Marck et al. (1997) and Thompson (2002) have also considered other angular
cross-sections. The main reason for using angular cross-sections is to allow existence
of corner flow along edges of a pore element. In angular cross-sections, it is possible
to have two fluids simultaneously present at any given cross-section, with the wetting
phase filling the corners.

2.3. Computational algorithms

There are two general algorithms for solving the pressure field in a dynamic pore-
network model: single-pressure and two-pressure algorithms. These are explained in
detail in the following.

2.3.1. Single-pressure algorithm

In this algorithm, regardless of the occupancy of pore bodies, a single pressure is
assigned to each pore body. This single-pressure algorithm is generally applied in the
following three different approaches.

(i) It is assumed that each pore body or pore throat is occupied by one fluid only
at a time. This is generally applied to networks with circular cross-sections (e.g. Van
der Marck et al. 1997; Aker et al. 1998a ,b).
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(ii) It is assumed that both fluids can be present within a pore body but not
within a pore throat. Then, it is assumed that the local capillary pressure is negligible.
Therefore, to each pore element a single pressure is assigned (e.g. Gielen et al. 2005).

(iii) It is assumed that an equivalent fluid can be defined as having a single
pressure. Thus, pore bodies and pore throats are filled with the equivalent fluid and
an equivalent conductivity is assigned to each pore throat (e.g. Mogensen & Stenby
1998; Al-Gharbi & Blunt 2005).

In all three approaches, the following volume balance equation for pore bodies is
solved:

Ni∑
j=1

Qij = 0, (2.1)

where Ni is the number of pore throats connected to pore body i, and Qij

[
L3T −1

]
is

the volumetric fluxes through pore throat ij. This flux is calculated by means of the
Washburn equation (Washburn 1921):

Qij = K
eq
ij

(
∆pij − pc

ij

)
, (2.2)

∆pij = pi − pj , (2.3)

where K
eq
ij [M−1L4T ] is an equivalent conductivity, which is a function of the pore

throat radius, pore throat length, fluid viscosities and location of the meniscus in the
pore throat; and pc

ij [ML−1T −2] is the effective capillary pressure (depending on the
number of interfaces located) between pore bodies i and j.

Obviously, corner flow is not included in Washburn’s formulation. Nevertheless,
(2.2) has been modified and used for angular cross-sections, using the concept of
equivalent phase (see approach (iii) above). It is assumed that a pore throat is filled
simultaneously by two fluids, each fluid having its own conductivity. In the pore
bodies on the two sides of a pore throat, each phase has its own pressure, which
drives the flow. However, to simplify the problem and decrease computational effort,
a single (virtual) pressure is assigned to the two fluids in pore bodies. Equation (2.1)
is then applied to calculate the flow. It is assumed that a pore throat is filled with
a single fluid with the equivalent conductivity K

eq
ij . This is achieved by averaging

conductivities of phases using the rule of equivalent resistor for electrical resistor
circuits. So, instead of solving for two pressure fields, one can solve for a single
pressure field (see e.g. Mogensen & Stenby 1998; Al-Gharbi & Blunt 2005; Bravo,
Araujo & Lago 2007).

The advantage of the single-pressure approach is that it simplifies the problem
and reduces computational effort. However, it also has some disadvantages. For
example, no local capillary pressure for pore bodies can be defined. This means that
no information from the interface behaviour under dynamic conditions can be gained
using this type of dynamic pore-network models. Moreover, this approach exhibits
some inconsistent behaviours in fluids occupancy in the network. In particular,
snapshots of fluid occupancy obtained from quasi-static and dynamic pore-network
models, for the same boundary conditions, are not the same. If we do not assign
any dynamics to the contact angle, we would expect to obtain the same equilibrium
fluid occupancy resulting from quasi-static pore-network model as from a dynamic
pore-network model for the same boundary conditions. However, Al-Gharbi & Blunt
(2005) showed that employing the concept of equivalent phase pressure solver induced
an inconsistent behaviour in fluid occupancy in their dynamic pore-network model.
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2.3.2. Two-pressure algorithm

In this algorithm, when a pore body is filled with two fluids, each fluid is assumed
to have its own pressure. To our knowledge, this concept was employed for the first
time by Thompson (2002), who defined variable local capillary pressures in pore
bodies and solved the pressure field for both phases separately. The local capillary
pressure for pore body i is defined as

pc
i = pn

i − pw
i = f

(
sw
i

)
. (2.4)

A flux Qα
ij is assigned in a pore throat ij for each phase separately. Then, (2.1) is

replaced by the following total volume balance for pore i :

Ni∑
j=1

(
Qn

ij + Qw
ij

)
= 0. (2.5)

Moreover, a separate volume balance for each phase in a pore body is employed:

Vi

	sα
i

	t
= −

Ni∑
j=1

Qα
ij , α = w, n, (2.6)

where Vi is the volume of pore body i, sα
i is the saturation of phase α in pore body i,

and Qα
ij is the volumetric flux of phase α in pore body i, given by (2.7). The latter is

given by an equation similar to the Washburn formula:

Qα
ij = −Kα

ij ∆pα
ij , α = w, n, (2.7)

where Kα
ij is a function of geometry and fluid occupancy of pore throats. This

formulation allows us to include mechanisms related to the local capillary pressure
(such as snap-off, counter-current flow) in simulations.

3. Model description
In this paper, we employ the two-pressure algorithm. The procedure and results are

described in detail below.

3.1. Model features

3.1.1. Structure and geometry

For predictive purposes, where pore-network models are used to simulate a specific
porous medium, the network should be based on the real connectivity of pores
(topology), aspect ratio (i.e. pore body radius divided by pore throat radius), and
shape of pores (geometry). Because of the following reasons, the structure of network
(coordination number) can be considered as a minor issue in this study. (a) We are
interested in studying the qualitative behaviour of new theories of two-phase flow, and
we prefer to eliminate effects of heterogeneities in our simulations. (b) Mogensen &
Stenby (1998) studied effects of pores connectivity (coordination number) and aspect
ratio using pore-network modelling. They found that with the increase of capillary
number, the effect of variation of coordination number on dynamics of the system
and residual saturation decreases. (c) For theoretical purposes, regular lattice with
fixed coordination number has generally been used, which is computationally simpler
than the irregular unstructured networks.

Our pore-network model has a three-dimensional regular lattice structure with
fixed coordination number of six. Pore bodies have cubic shape and pore throats
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Ri rij Rj

d
Pore i

Pore j

Figure 1. Geometrical configuration for determining the pore throat radius (rij ) based on
pore bodies radii Ri and Rj .

have square cross-sections. Figure 1 shows a schematic of two pore bodies and the
connected pore throat. The size distribution of pore bodies is given by a truncated
log-normal distribution, with no spatial correlation,

f (Ri; σnd) =

√
2 exp

⎡⎢⎢⎣−1

2

⎛⎜⎜⎝ ln
Ri

Rm

σnd

⎞⎟⎟⎠
2⎤⎥⎥⎦

√
πσ 2

ndRi

⎡⎢⎢⎣erf

⎛⎜⎜⎝ ln
Rmax

Rm√
2σ 2

nd

⎞⎟⎟⎠− erf

⎛⎜⎜⎝ ln
Rmin

Rm√
2σ 2

nd

⎞⎟⎟⎠
⎤⎥⎥⎦

, (3.1)

where Ri is the radius of inscribed sphere in a pore body (so, the cube side length is
2Ri), Rmin is the lower range of truncation, Rmax is the upper range of truncation, Rm

is the mean of inscribed sphere radii, and σnd is the standard deviation. The radius
and length of pore throats connecting the pore bodies are determined based on the
size of neighbouring pore bodies. Spacings between the layers of the network in x -,
y- and z -directions are chosen to be variable. Let the spacings between layers i and
i + 1 in the three directions be denoted by λx,i , λy,i and λz,i . Then, designating each
pore body by its lattice indices, namely i, j , and k, lattice spacings are defined as
follows:

λx,i = max{R(i, j, k) + R(i + 1, j, k) : j = 1, ny, k = 1, nz}, i = 1, nx, (3.2a)

λy,j = max{R(i, j, k) + R(i, j + 1, k) : i = 1, nx, k = 1, nz}, j = 1, ny, (3.2b)

λz,k = max{R(i, j, k) + R(i, j, k + 1) : i = 1, nx, j = 1, ny}, k = 1, nz, (3.2c)

where nx , ny and nz denote the number of pore bodies in the x-, y-, and z-directions,
respectively. Then, the length of the pore throats is determined. On the basis of
the length of a pore throat and sizes of its neighbouring pore bodies, the size of
that pore throat cross-section is determined (for more detailed explanation refer to
Joekar-Niasar et al. 2008). Consider two pore bodies i and j, with a centre-to-centre
distance d (see figure 1), and inscribed pore radii Ri and Rj , respectively. We define

the dimensionless R̃i and R̃j as follows:

R̃i = Ri/d, R̃j = Rj/d. (3.3)
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We can calculate dimensionless inscribed radius of the pore throat ij, r̃ij , as follows:

r̃ij = 
i
j

(



1/n
i + 


1/n
j

)−n
, n > 0, (3.4)


i =
R̃i sin(π/4)

(1 − R̃i cos(π/4))n
, (3.5)


j =
R̃j sin(π/4)

(1 − R̃j cos(π/4))n
, (3.6)

where n is a parameter which can control ratio between the radii of pore bodies and
the pore throat. It should be larger than zero. Larger n results in smaller pore throats.
In this work, we select n = 0.1 to have a significant overlapping between pore body
and pore throat radii distributions. The resultant aspect ratio varies between (2.2)
and (3.4).

3.1.2. Boundary conditions

It is assumed that the network is connected to a non-wetting phase reservoir on one
side and a wetting phase reservoir on the other side. Dirichlet boundary conditions are
imposed at these boundaries. We refer to the difference between the two boundary
pressures as the global pressure difference P c

global . After breakthrough of the pore
throat ij at the lower boundary by the non-wetting fluid, we assign the same capillary
pressure to both sides of the outlet pore throat, determined by the upstream pore
body; pc

i = pc
j . Side boundary conditions are assumed to be periodic.

3.1.3. Assumptions

The following assumptions are imposed in the computational algorithm and
network development.

(i) The volume of pore throats is negligible compared with the volume of pore
bodies. Thus, the time required for filling a single pore throat is negligible compared
with that of a pore body. Also, this volume is not included in the computation of
network saturation.

(ii) Hydraulic resistance to flow in pore bodies is assumed to be negligible compared
with that of pore throats.

(iii) Fluids are assumed immiscible and incompressible and the solid matrix is
assumed to be rigid.

(iv) Flow in the pore throats is assumed to have low Reynolds number such that
transient effects can be neglected at the pore scale. This allows us to use the Washburn
equation for fluid fluxes through pores.

(v) No gravity effect has been considered in the simulations. Flow occurs because
of the pressure difference across the boundaries. Adding gravity does not constitute
any major complication in the code. But it does not affect results and conclusions.

3.1.4. System parameters and specifications

Tables 1 and 2 show the fluid properties and network specifications used in the
simulations, respectively.

3.2. Local rules

3.2.1. Capillary pressures for pore bodies and pore throats

Since pore bodies in our model are cubic, the wetting phase always resides in the
corners and along edges (see figure 10). The saturation of the pore body (i.e. volume
of the wetting fluid divided by the volume of the pore body) depends on the prevailing
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Specification Symbol Value Unit

Contact angle θ 0.0 deg.

Interfacial tension σ nw 0.0725 kg s−2

Wetting fluid viscosity µw 0.001 kg m−1s−1

Non-wetting fluid viscosity µn 0.0001, 0.001, 0.01 kg m−1s−1

Table 1. Fluid properties in the simulations.

Specification Symbol Value Unit

Lattice dimension 3D: 35 × 35 × 35 –
(Two-dimensional only for figure 7) 2D: 70 × 70
Lattice size 3D: 6 × 6 × 6 mm3

2D: 12.5 × 12.5 mm2

Minimum pore body inscribed radius Rmin 0.0408 mm
Maximum. pore body inscribed radius Rmax 0.234 mm
Mean pore body inscribed radius Rm 0.114 mm
Standard deviation 0.169 mm

Table 2. Network parameters.

capillary pressure. For a given capillary pressure, curvature of the interface in the
vertices and edges of the cube can be calculated and, consequently, the corresponding
saturation can be estimated. In Appendix A, details of derivation of the (local) pc

i –sw
i

relationship for a cubic pore body are presented. The resulting equation for pc
i , in

terms of the radius Ri of the inscribed sphere of the pore body i and the local wetting
phase saturation, is:

pc
i

(
sw
i

)
=

2σ nw

Ri

(
1 − exp

(
−6.83sw

i

)) . (3.7)

A capillary pressure should also be assigned to a pore throat once it is invaded and
both phases are present. We assume that capillary pressure in a pore throat is equal
to the capillary pressure of the upstream pore body.

3.2.2. Minimum wetting phase saturation in a pore body

Obviously it is impossible to completely displace the wetting phase from the corners
of a cube. We assume that each pore body has a minimum saturation sw

i,min, which
depends on the imposed global pressure difference (P c

global defined in § 3.1.2) as well as
the blockage of the invading fluid. The capillary blockage of invading fluid (P c

eblock
) is

also a global variable defined to be the minimum entry capillary pressure of all pore
throats that are connected to the non-wetting phase and not yet invaded. Thus, using
the pc

i –sw
i relationship given by (3.7), the local minimum wetting phase saturation in

a pore body may be determined as follows:

sw
i,min = − 1

6.83
ln

(
1 − 1

Ri

2σ nw

min{P c
global , P

c
eblock

}

)
. (3.8)

3.2.3. Entry capillary pressure for a pore throat

We assume that a pore throat will be invaded by the non-wetting phase when
the capillary pressure in a neighbouring pore body becomes larger than the entry
capillary pressure of the pore throat. The latter can be calculated as follows (due to
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Mayer & Stowe 1965; Princen 1969a ,b, 1970; Ma, Mason & Morrow 1996):

pc
e,ij =

σ nw

rij

(
θ + cos2 θ − π/4 − sin θ cos θ

cos θ −
√

π/4 − θ + sin θ cos θ

)
, (3.9)

where rij is the radius of inscribed circle of the pore throat cross-section, and θ is the
contact angle.

3.2.4. Conductivities of pore throats

Conductivities of pore throats are determined based on the fluid occupancy and
size of the pore throat. One of the following two different states may occur during
drainage.

(a) The pore throat is occupied by the wetting phase only. For this case, the
following equation was obtained by Azzam & Dullien (1977):

Kw
ij =

π

8µwlij

(
r

eff
ij

)4
,

Kn
ij = 0,

⎫⎬⎭ (3.10)

where µw is the viscosity of the wetting phase, lij is the length of the pore throat, and

r
eff
ij =

√
4

π
rij . (3.11)

(b) The pore throat is invaded by the non-wetting phase, thus both phases may be
flowing. Then, following Ransohoff & Radke (1988) we can write

Kw
ij =

4 − π

βµwlij

(
rc
ij

)4
, (3.12)

Kn
ij =

π

8µnlij

(
r

eff
ij

)4
, (3.13)

where

rc
ij =

σ nw

pc
ij

, (3.14)

r
eff
ij =

1

2

⎛⎝√r2
ij − (4 − π)rc2

ij

π
+ rij

⎞⎠. (3.15)

In (3.12), β is a resistance factor that depends on geometry, surface roughness, crevice
roundness and other specifications of the cross-section. A detailed explanation of β

can be found in Zhou, Blunt & Orr (1997). As mentioned earlier, the pore throat
capillary pressure pc

ij is set equal to the capillary pressure of the upstream pore body.

3.2.5. Snap-off

During drainage, if the local capillary pressure in a pore throat becomes smaller
than a critical value of capillary pressure (defined below), the corner interfaces become
unstable and snap-off will occur. Ignoring dynamics of contact angle, the criterion for
snap-off in a square cross-section pore throat has been defined as follows (Vidales,
Riccardo & Zgrabli 1998):

pc
ij �

σ nw

rij

(cos θ − sin θ). (3.16)
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After the snap-off, the pore throat will be filled with the wetting phase again, and
the non-wetting phase becomes disconnected, receding in the neighbouring two pore
bodies.

3.3. Computational procedure

3.3.1. Pressure field solver

Equations (2.4), (2.6) and (2.7) form a determinate set to be solved for sw
i , pw

i and
pn

i . However, to reduce the computational demand, the equations are reformulated
in terms of total pressure (saturation-weighted average pressure, p̄i) defined in each
pore body as

p̄i = sw
i pw

i + sn
i p

n
i . (3.17)

Using (2.4) and sn
i + sw

i = 1, we get the following equations for pressures of wetting
and non-wetting phases:

pw
i = p̄i − sn

i p
c
i , (3.18)

pn
i = p̄i + sw

i pc
i . (3.19)

For each pore body i, we know that the summation of fluxes of the two phases should
be zero, as specified by (2.5). Substituting from (2.7) into (2.7), we obtain

Ni∑
j=1

[
Kn

ij

(
pn

i − pn
j

)
+ Kw

ij

(
pw

i − pw
j

)]
= 0. (3.20)

Substituting (3.18) and (3.19) in (3.20) results in an equation for p̄i:

Ni∑
j=1

(
Kw

ij + Kn
ij

)
(p̄i − p̄j )

= −
Ni∑

j=1

[(
Kn

ij s
w
i − Kw

ij

(
1 − sw

i

))
pc

i +
(
Kw

ij

(
1 − sw

j

)
− Kn

ij s
w
j

)
pc

j

]
. (3.21)

In this equation, the right-hand side as well as the coefficients of the left-hand side
depend on local saturation only. This linear system of equations is solved for p̄i

by diagonally scaled bi-conjugate gradient method using the SLATEC mathematical
library (Fong et al. 1993).

3.3.2. Saturation update

After calculating p̄i , pressure of phases can be back-calculated explicitly using (3.18)
and (3.19). Then (2.7) can be used to calculate Qα

ij . Afterwards, (2.6) can be solved
for new saturations in an explicit way based on saturation values from the previous
time step. This procedure, however, will result in numerical problems for a capillary-
dominated flow regime, as mentioned in Thompson (2002). Thompson (2002) found
that the explicit saturation update was not numerically stable for very small capillary
numbers and he could not successfully simulate the capillary-dominated flow. In
addition, he could not observe consistency between near-equilibrium snapshots res-
ulting from dynamic simulations and quasi-static ones. Therefore, we have developed
a semi-implicit approach to control the nonlinearities under such flow conditions.
Summing (2.7) for the two phases and writing pw

i in terms of pn
i and pc

i , we obtain
the following relationship for the total flux Qtot

ij = Qn
ij + Qw

ij through a pore throat:

Qtot
ij =

(
Kn

ij + Kw
ij

)(
pn

i − pn
j

)
− Kw

ij

(
pc

i − pc
j

)
. (3.22)
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Then, defining Kn
ij + Kw

ij = K tot
ij and re-substituting for Qn

ij from (2.7), we can write:

Qtot
ij =

K tot
ij

Kn
ij

Qn
ij − Kw

ij

(
pc

i − pc
j

)
. (3.23)

Rewriting the above equation for Qn
ij , we get a formula analogous to the

fractional-flow equation:

Qn
ij =

Kn
ij

K tot
ij

Qtot
ij +

Kw
ij K

n
ij

K tot
ij

(
pc

i − pc
j

)
. (3.24)

Substituting (3.24) in (2.6) results in

Vi

	sw
i

	t
−

Ni∑
j=1

(
Kn

ij

K tot
ij

Qtot
ij +

Kw
ij K

n
ij

K tot
ij

(
pc

i − pc
j

))
= 0. (3.25)

The capillary pressure term can be approximated to the first order by

pc
i − pc

j =
∂pc

ij

∂sw
ij

(
sw
i − sw

j

)
, (3.26)

where ∂pc
ij/∂sw

ij is calculated from the upstream pore body. Finally, after substitution
of (3.26) in (3.25), we get the following discretized form of a semi-implicit equation
for saturation update:

Vi

(
sw
i

)k+1 −
(
sw
i

)k
	t

−
Ni∑

j=1

(
Kn

ij

K tot
ij

Qtot
ij +

Kw
ij K

n
ij

K tot
ij

∂pc
ij

∂sw
ij

((
sw
i

)k+1 −
(
sw
j

)k+1
))

= 0, (3.27)

where the superscript k denotes time step level. In (3.27), all coefficients are evaluated
at time step k, so that this equation may be recast into a linear equation matrix:(

Vi

	t
−

Ni∑
j=1

Kn
ijK

w
ij

K tot
ij

∂pc
ij

∂sw
ij

)(
sw
i

)k+1
+

(
Ni∑

j=1

Kn
ijK

w
ij

K tot
ij

∂pc
ij

∂sw
ij

)(
sw
j

)k+1

=
Vi

	t

(
sw
i

)k
+

Ni∑
j=1

Kn
ij

K tot
ij

Qtot
ij . (3.28)

Note that since Qtot
ij and Kα

ij are calculated from time step k, this scheme is not
fully implicit. Here also the diagonally scaled bi-conjugate gradient method from
SLATEC mathematical library (Fong et al. 1993) is used.

3.3.3. Time stepping

The time step is determined on the basis of time of filling of pore bodies by the
non-wetting phase or wetting phase denoted by 	ti . The wetting phase saturation
of a pore body varies between 1 and sw

i,min as we assume that a pore body may be
drained down to the minimum saturation. On the other hand, we allow for imbibition
to occur locally in some pore bodies, in which case the wetting phase saturation in a
pore body can go back to 1. Then, the global time step will be the minimum value of
all local time steps. So, we calculate 	ti for all pore bodies, depending on the process,
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Figure 2. Quasi-static P c–Sw curves for different network sizes.

from the following:

	ti =

⎧⎪⎪⎨⎪⎪⎩
Vi

qn
i

(
sw
i − sw

i,min

)
for local drainage, qn

i > 0,

Vi

qn
i

(
1 − sw

i

)
for local imbibition, qn

i < 0,

(3.29)

where the accumulation rate of the non-wetting phase is defined as qn
i =

∑Ni

j=1 Qn
ij .

Then, the time step is chosen to be the minimum 	ti:

	tglobal = min{	ti}. (3.30)

Note that we have imposed a truncation criterion of 10−6 for saturation when it
is close to sw

i,min or 1. Also, note that in (3.29), there is a correspondence between
saturation change (numerator) and the accumulation rate of the non-wetting phase
(denominator). That is, when local saturation is close to the limits, the accumulation
rate of the non-wetting phase is also very small. This means that 	ti always remains
finite and non-zero.

4. Drainage simulations and analysis
4.1. General procedure

Initially, the network is fully saturated with the wetting phase. The simulation of
drainage starts with raising the pressure of the non-wetting phase reservoir. When
the global pressure difference, P c

global , becomes larger than the entry pressure of the
largest pore throat connected to the non-wetting phase reservoir, drainage starts. In
quasi-static simulations, the global pressure difference is increased incrementally. At
the end of each step, when there is no flow (static conditions), the overall saturation
of the network is determined. Then, the global pressure difference is increased again.

In order to have representative results for a network with a given statistical
distribution, the network must have a minimum size, corresponding to the REV (Bear
1972). REV size was determined by performing quasi-static drainage simulations for
a network with different sizes but with the same statistical parameters. Results are
shown in figure 2. It is evident that the P c–Sw curve changes with the network size
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until a network size of 35 × 35 × 35 pore bodies. For larger network sizes, the curves
are almost identical. Therefore, a network with 35 pore bodies in each direction was
used in our simulations.

4.2. Averaging procedure

Our simulations result in local-scale variables such as pressure, saturation and fluxes.
These have to be averaged over the network to obtain macroscopic variables. Average
saturation is simply defined as follows:

Sw = V w

V w+V n =

npb∑
i=1

sw
i Vi

npb∑
i=1

Vi

,

Sn = 1 − Sw,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.1)

where npb is the total number of pore bodies. The total flux across any given surface is
equal to the sum of fluxes of all pore throats intersecting that surface. The averaging
of pressure is, however, less straightforward. Commonly, average pressure is obtained
using an intrinsic phase average operator (see e.g. Whitaker 1977). However, recently
it has been shown that the intrinsic phase average pressure introduces numerical
artefacts when both pressure and saturation are spatially variable (see Nordbotten
et al. 2007, 2008). Instead, a centroid-corrected averaging operator has been suggested
by Nordbotten et al. (2008) to alleviate problems associated with intrinsic phase
averaging. Nevertheless, here we still use intrinsic phase average for a pore body i
with volume of Vi and α-phase pressure of pα

i , as this is still most commonly used:

P α =
1

δV α

∫
δV α

P αdV =

npb∑
i=1

pα
i sα

i Vi

npb∑
i=1

sα
i Vi

, α = n, w. (4.2)

Commonly, the macroscale capillary pressure is defined to be the difference in the
average pressures of non-wetting and wetting phases. But as we show later, this is
not a correct definition of macroscopic capillary pressure. Here, we propose to define
macroscopic capillary pressure based on the average of local capillary pressures of
pore bodies, weighted by the corresponding interfacial area Anw

i :

P c =

npb∑
i=1

pc
i A

nw
i

npb∑
i=1

Anw
i

. (4.3)

The calculation of interfacial area in pore bodies is explained in Appendix B.

5. Results and discussion
5.1. Quasi-static versus dynamic simulation

As explained before, previous dynamic pore-network models failed to simulate very
slow flow (very small capillary numbers) properly. As Thompson (2002) and Al-
Gharbi & Blunt (2005) found that the application of dynamic pore-network models
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Figure 3. Comparison between equilibrium points resulting from quasi-static and dynamic
pore-network models for the same boundary conditions in a 20-pore body cubic lattice
network.

for very small capillary numbers (relatively low flow velocities) was not numerically
successful and severe instability problems were observed. To show capability of the
proposed algorithm in simulating a capillary-dominated flow, the P c–Sw curve has
been produced using the dynamic pore-network model with very small non-wetting
phase reservoir pressure increments. Simultaneously, for the same network the P c–Sw

curve has been generated using a quasi-static pore-network model. As can be observed
in figure 3, the equilibrium points resulting from both models are the same. That is,
if there is no dynamic effect in contact angle, there will be full agreement between
quasi-static and dynamic pore-network models. We found that equilibrium fluid
configurations resulting from both models (not shown here) are the same. This
simulation was done for a 20-pore body cubic lattice network. The simulation took
46 h on Intel(R) CPU 6600, 2.4 GHz with 2 GB RAM, which is significantly more
time-consuming compared with viscous-dominated flow.

Figure 3 shows some interesting features resulting from the behaviour of interfaces
in a near-to-equilibrium system. Average phase pressure difference, P n − P w (4.2),
and average capillary pressures P c (4.3) are the same, and their values are fluctuating
around the quasi-static model P c–Sw curve. The dips visible in figure 3 are due to the
relaxation of the interfaces behind the invading fronts. This phenomenon has been
observed in micromodel experiments reported by Pyrak-Nolte (2007). However, as we
increased the aspect ratio (radius of pore body to radius of pore throat), these dips
disappeared, but more fluctuations in the dynamic P c–Sw curve were observed.

5.2. Non-equilibrium effects in average phase pressures

In this section, we investigate the validity of non-equilibrium capillarity in (1.7)
and the behaviour of non-equilibrium capillarity coefficient (τ ). To do so, we have
determined the change of saturation with time under various dynamic conditions
and have prepared corresponding plots of average phase pressure difference versus
saturation.

As explained before, by imposing a large global pressure difference on the network
domain, it is possible to simulate dynamic two-phase flow drainage experiments. We
have considered two fluids with three different viscosity ratios (M = µn/µw = 0.1, 1, 10)
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and five different global pressure difference values (10, 15, 20, 25 and 30 kPa).
Computational time increases with the decrease of viscosity ratio and decrease of
global pressure difference. The simulations took about 10–70 h on Intel(R) CPU 6600,
2.4 GHz with 2 GB RAM.

Commonly, for viscosity ratios less than unity, the displacement shows instability.
We found that for given flow conditions, saturation changes with time for M = 1
and M =10 were very similar. The breakthrough saturations for M = 1 and M = 10
were not so different for different global pressure differences. While for M =0.1, the
breakthrough saturation decreased significantly for larger global pressure differences.
The breakthrough saturation for favourable viscosity ratio was smaller than that for
the unfavourable viscosity ratio (in the same network), due to the stable front invasion
for M � 1 and viscous fingering for M < 1.

Curves of average fluid pressure difference (based on definition (4.2)) versus average
saturation are shown in figure 4. It is clear that the curves are strongly dependent
on boundary conditions. The differences in fluid pressures are found to be higher
for larger global pressure differences, which also lead to larger saturation changes.
This behaviour agrees with (1.7), which suggests larger pressure differences for large
saturation changes under drainage.

As can be observed in figure 4, a higher-viscosity ratio can also cause higher
pressure build-up. Higher-viscosity ratios mean that less snap-off occurs and fewer
pores will be partially filled and disconnected from the reservoir. The decline in
the fluid pressure differences as residual saturation is approached is due to the non-
wetting phase breaking through the outflow boundary of the averaging window. After
the breakthrough, average phase pressure difference decreases because of the direct
connection of non-wetting phase to the lower (outflow) boundary, which entraps
wetting phase in the corners. Thus, wetting fluid will gain a higher pressure compared
with non-trapped wetting phase. Consequently, the average pressure difference
approaches the P c–Sw curve. The decline in the fluid pressure differences as residual
saturation in the averaging window is reached has been studied analytically by
Nordbotten et al. (2008), who found qualitatively the same behaviour.

According to (1.7), the deviation of the macroscopic pressure difference from the
macroscopic capillary pressure is related to the time rate of change of saturation.
Hassanizadeh & Gray (1993a) have suggested that τ is a non-negative non-equilibrium
capillarity coefficient that may still depend on saturation. To implement this equation
for practical purposes, it is crucial to determine the dependency of this coefficient
on medium and/or fluid properties. To compute τ , first a set of ∂Sw/∂t values is
calculated for a given saturation (and constant M). Then, from corresponding curves
in figure 4, P c and P n − P w are found at that saturation (for a given viscosity ratio
M). This results in a graph of P n − P w − P c versus ∂Sw/∂t (not shown here) for the
given saturation values and viscosity ratios. The slopes of the resulting curves give the
values of τ at different saturations. Results are plotted in figure 5. It is evident that
the dynamic effect is stronger for higher-viscosity ratios. This is because for viscous
fluids, it takes much longer time for the equilibrium fluid configuration to be reached.
The decrease of τ after the breakthrough is not relevant and is not a property of the
porous medium, but is due to the drainage front reaching the boundary of the domain
(see also the explanation given in relation to the decline of pressure differences at low
saturation in figure 4). For M � 1, the non-equilibrium capillarity coefficient increases
with the decrease of the wetting phase saturation, which is similar to the findings of
Mirzaei & Das (2007) in their column-scale drainage simulations (using a continuum
model) for a favourable viscosity ratio. But this trend is reversed for M =0.1. This
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Figure 5. Variation of non-equilibrium capillarity coefficient τ as a function of saturation
for different viscosity ratios M = 0.1, 1.0, 10. The vertical axis is shown in logarithmic scale.

trend can be interpreted based on the empirical equation suggested by Stauffer (1978)
for unsaturated soil. On the basis of the drainage experiments done on fine sand in
an air–water system, he suggested the following equation:

τ =
αεµ

λk

(
pc

ρg

)2

, (5.1)

where α is assumed to be a constant equal to 0.1 for granular soils, ε is porosity,
µ is the water viscosity, λ and pc are the coefficients in Brooks–Corey formula
(Brooks & Corey 1964), k is the saturated permeability, ρ is the water mass density,
and g is the gravity. For the case of two-phase flow, µ can be replaced by µeff , the
saturation-weighted average viscosity of the two fluids, which is very much dependent
on the flow regime. For a stable invasion, where a piston-like movement is dominant,
viscosity can be weighted linearly with saturation: µeff = µnSn + µwSw . However, for
a viscous fingering regime, some researchers such as Koval (1963) have suggested
some other empirical relationships for effective viscosity (see e.g. Fayers, Blunt &
Christie 1990). In all equations, effective viscosity is suggested to be a function of
saturation. Considering τ ∝ µeff , it can be concluded that ∂τ/∂Sw ∝ ∂µeff /∂Sw . The
term ∂µeff /∂Sw will be positive for unfavourable viscosity ratio, since both wetting
phase saturation and effective viscosity decrease with decreasing of wetting phase
saturation. In addition, the difference between magnitudes of ∂τ/∂Sw for different
viscosity ratios is significant. From figure 5, we can determine that ∂τ/∂Sw for M = 10
is almost 10 times larger than that for M = 1. This is qualitatively consistent with
(5.1), where effective viscosity for M =10 is almost 10 times larger than that for M = 1
for intermediate and low ranges of wetting phase saturation.

5.3. On the existence of the P c–Sw–anw surface

As discussed in § 1, the main underlying concept in (1.7) is that capillary pressure
is an intrinsic property of the fluids–solid system, and thus it should be a function
of state variables only (namely saturation, temperature and specific interfacial area);
it should not depend on initial or boundary conditions and other parameters that
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control transient flow conditions such as viscosity. Here, we investigate this conjecture
for the case of primary drainage.

First, consider the average capillary pressure P c defined by (4.3). Plots of P c

versus average saturation under various dynamic conditions are shown in figure 6(a),
where the quasi-static capillary pressure is also plotted. It is evident that the average
capillary pressure–saturation relationship is not unique, as it depends on transient flow
conditions as well as fluids viscosity ratio. This apparently contradicts the concepts
presented above, which state that capillary pressure curve is an intrinsic property of
the fluid–solid system. But in fact the theory prescribes that the capillary pressure is
a function of specific interfacial area as well as saturation (see e.g. Hassanizadeh &
Gray 1993a; Reeves & Celia 1996; Held & Celia 2001; Joekar-Niasar et al. 2008,
2009). So, differences observed in P c–Sw curves could be due to the fact that the
specific interfacial area is different under different dynamic conditions.

Figure 6(b) shows values of specific interfacial area for different viscosity ratios at
different saturations for a three-dimensional network used in previous simulations.
In addition, the relationship between specific interfacial area and saturation resulting
from static simulations is shown by a thick solid line. According to the conjecture of
Hassanizadeh & Gray (1993b), if the P c–Sw–anw surface were an intrinsic property of
the porous medium, all the points for all non-equilibrium and equilibrium conditions
should be located on a single surface. To investigate this, a second-order polynomial
surface was fitted to all P c–Sw–anw data points presented in figures 6(a) and 6(b),
which is shown in figure 6(c). Note that the selection of a polynomial function for
fitting is arbitrary and only for simplicity in presentation. This surface is highly
correlated with the data points (R2 = 0.95 and the average relative error is about
14 %). The behaviour of the surface is very similar to the P c–Sw–anw surfaces shown
by Reeves & Celia (1996), Held & Celia (2001), Joekar-Niasar et al. (2008, 2009) and
Porter et al. (2009), although they only simulated P c–Sw–anw equilibrium points.

As can be observed, specific interfacial area has larger values for smaller viscosity
ratios, as a result of instability and fingering. For an unfavourable viscosity ratio
(M = 0.1), local entry capillary pressures of pore throats and their connectivity
(topology and geometry) control the invasion. According to results shown in
figure 6(b), the largest specific interfacial area has been created in the quasi-static
simulation, where only capillary forces are controlling the invasion. In other words, it
seems that for a given saturation value, with the decrease of viscous forces compared
with capillary forces, more interfacial area is created.

A significant variation of specific interfacial area with viscosity ratio and flow
conditions in figure 6(b) suggests that invasion mechanism and system parameters
have a major effect on interfacial area evolution under dynamic conditions. This is
illustrated in figure 7, where we have shown different snapshots of fluid distribution
for drainage. These simulations were performed in a two-dimensional network with
size of 70 × 70 pore bodies. Snapshots are shown for P c

global = 20 kPa and at wetting
phase saturations of 0.9, 0.5 and 0.3. As shown in figure 7, under favourable conditions
(M � 1), the interface front is stable with less fingering. For a small global pressure
difference, more fingering occurs compared with high global pressure differences for
a given (favourable) viscosity ratio. This is because, with more invasion of the non-
wetting fluid, more energy dissipation occurs, and consequently at low saturations
more fingering can occur. Under unfavourable conditions (M < 1), however, even a
large global pressure difference cannot stabilize the interface front. This is because
the front basically follows the local variations in pore throat sizes within the pore
network (Aker et al. 1998b).
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Non-equilibrium capillarity effects in two-phase flow 61

M = 0.1

Sw = 0.3(a) (b) (c)Sw = 0.5 Sw = 0.9

M = 1.0

M = 10

Figure 7. Qualitative comparison of macroscopic interface topology for M = 0.1, 1.0 and 10
in a two-dimensional (70×70) network at three different saturations.

5.4. Production rate of specific interfacial area versus saturation

As explained in § 1, in the new theory of two-phase flow, the interfacial area production
term Enw (1.4) plays a significant role. Since there is as yet no quantitative information
available about this term, we have used our pore-network model to get some insight
into its dependence on other primary variables. In particular, the dependency of Enw

on saturation and its time rate of change, and on viscosity ratio will be studied.
The procedure for the estimation of Enw is as follows. If in (1.4) we neglect the

advective flux term, the production term may be calculated as the rate of change
of specific interfacial area with time. The production rate of specific interfacial area
(Enw ) is plotted as a function of saturation in figure 8. It is evident that Enw decreases
with the decreasing of saturation. We also see that it is much larger for M = 0.1 than
that for M = 10 and M =1. Figure 8 also shows that Enw depends on the imposed
boundary pressure, which in turn causes different rate of change of saturation ∂Sw/∂t .
Therefore, on the basis of figure 8 and the change of saturation with time, one can
construct a relationship between Enw and −∂Sw/∂t for different saturations. The
results (not presented here) show that at saturations lower than 0.9, we can roughly
define a linear relationship between Enw and −∂Sw/∂t:

Enw = −G
∂Sw

∂t
, (5.2)

where G
[
L−1
]

is a material coefficient, which itself is a function of saturation as well
as viscosity ratio, as shown in figure 9. We suggest a linear relationship between G

and saturation: G(Sw, M) = a + b Sw , where values of ‘a ’ and ‘b’ depend on viscosity
ratio and are reported in figure 9. A relationship similar to (5.2) was employed by
Niessner & Hassanizadeh (2008) in a model based on the new theory of two-phase
flow.

6. Summary and conclusions
The DYPOSIT model, a dynamic pore-network model for simulating two-phase flow

in a porous medium has been developed. The combination of features included in this
model has not been offered in previous network models. The network elements have
square cross-sections, as a result of which both phases can be simultaneously presented
within a pore body or pore throat. Local capillary pressure in the pore elements is
taken into account. Two different pressure fields are assigned to each phase and solved
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Figure 8. Plots of production rate of specific interfacial area Enw versus saturation for (a)
M = 0.1, (b) M = 1.0 and (c) M = 10, and for various values of global pressure difference.

using a robust algorithm. The model is numerically stable for a wide range of viscosity
ratios and under different dynamic conditions (viscous-dominated or capillary-
dominated). The model is used to simulate drainage experiments with Dirichlet
boundary conditions. It is applied to the study of dynamics of specific interfacial
area, average capillary pressure, average phase pressure differences, functionality of
non-equilibrium capillarity coefficient as well as production rate of interfacial area.
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Macroscopic capillary pressure is defined as the average of local capillary pressure
at all interfaces weighted with the area of the interface. We have shown that neither
average capillary pressure–saturation curves nor specific interfacial area–saturation
curves are unique, but they depend on flow dynamics as well as fluid–solid properties.
However, it is shown that capillary pressure–saturation–interfacial area surface for
primary drainage is an intrinsic property of the porous medium, independent of fluid
properties and dynamic conditions. The difference between average phase pressures,
however, is found to be dependent on boundary pressures and time rate of change
of saturation as prescribed by the dynamic capillary theory. Our results illustrate
that the non-equilibrium capillarity coefficient is a function of saturation as well as
viscosity ratio.

Dynamics of interfacial area show that with the decrease of the viscosity ratio,
specific interfacial area increases, which is a consequence of the invasion mechanism.
However, in all dynamic cases, specific interfacial area is smaller than that under
quasi-static conditions. With the decrease of the viscosity ratio, the effect of the
intrinsic properties of medium (geometry and topology) on the creation of interfacial
area increases. The production rate of specific interfacial area for different viscosity
ratios has been studied and quantified. With the decrease of the viscosity ratio, the
production rate of the specific interfacial area increases. The production rate is found
to have an almost linear relationship with the time rate of change of saturation.
This linearity coefficient is a function of saturation as well as the viscosity ratio.
The dynamic pore-network model developed here is capable of simulating complex
problems of flow of two fluid phases in porous media including non-equilibrium
capillarity effects and dynamics of interfaces. In future research, our model will be
applied to a larger domain in order to simulate column experiments and investigate
the validity of the full system of equations of the extended Darcy’s law (1.1) and (1.2).
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Appendix A. The pc
i –s

w
i relationship for a pore body

Consider a cube with its inscribed sphere radius equal to Ri; so the edge length
is equal to 2Ri . If the non-wetting phase volume is larger than the volume of the
inscribed sphere (i.e. sw

insc. � 1 − (π/6) = 0.48), the fluid interfaces are pinned into the
corners. However, for sw

insc. > 1 − (π/6) = 0.48, they are not pinned into the corners.
Therefore, for the variation of local capillary pressure with saturation, we identify
two different zones, as shown in figure 12 and described below.

A.1. Capillary pressure for 0 <sw
i � 0.48 (zone I)

In a cube, interfaces can be formed along its 12 edges as well as in its 8 corners, as
shown in figure 10. Edge interfaces form part of a cylindrical surface. Therefore, they
have only one finite radius of curvature. Corner interfaces form part of a spherical
surface and thus have two identical finite curvatures. Assuming a contact angle of
zero, edge interfaces form one-fourth of a cylinder, whereas corner interfaces are
one-eighth of a sphere (see figure 10). Let us denote the radius of curvature of corner
interfaces by rci,1. Then, the total volume of the wetting phase in the corners would
be equal to the volume of a cube with dimensions 2rci,1 minus the volume of a sphere
with radius rci,1:

V w
corner =

(
8 − 4

3
π

)
rc3

i,1. (A 1)

The length of an edge interface is equal to the cube size, 2Ri , minus two times the
radius of corner interfaces:

Ledge = 2(Ri − rci,1). (A 2)

Thus, if we denote the radius of curvature of an edge interface by rci,2, the total
volume of the wetting phase in the edges will be

V w
edge = 12Ledgerc

2
i,2

(
1 − π

4

)
. (A 3)
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Figure 11. (a) Expansion of an interface into a pore body before inscribing in it. (b)
Parametrization of the interface for calculating the volume of non-wetting phase; h is the
height of dome inside a pore throat (truncated part of the sphere), rc1 is the radius of the
expanding non-wetting sphere, and rij is the pore throat radius.

The total volume of the wetting phase in the pore body is thus obtained by summing
(A 1) and (A 3) as

V w
i =

(
8 − 4

3
π

)
rc3

i,1 + 24(Ri − rci,1)rc
2
i,2

(
1 − π

4

)
. (A 4)

Since we assume that the capillary pressure in a pore body is the same everywhere,
the capillary pressures of edge and corner interfaces must be equal. Thus, pc

i =
(2σ nw/rci,1) = (σ nw/rci,2), which gives rci,1 and rci,2 in terms of pc

i . Substituting for
rci,1 and rci,2 in (A 4) and dividing both sides by the total volume of the cubic pore
body, 8R3

i , we obtain the following pc
i –sw

i relationship for a pore body if sw
i � 0.48:

sw
i =

(
2 +

1

6
π

)(
2σ nw

pc
i

)3

+

(
6 − 3

2
π

)
Ri

(
2σ nw

pc
i

)2

8R3
i

. (A 5)

The case of rci,1 = Ri corresponds to the situation that the non-wetting phase occupies
the inscribed circle of the pore body.

A.2. Capillary pressure for 0.48 <sw
i � 1 (zone II)

When the fluid interfaces are not pinned into the corners, one may choose from the
following two approaches.

(a) The simplest approach is to assign a constant capillary pressure equal to 2σ nw/Ri

to the pore body if sw
i � 0.48 as shown in figure 12 (the horizontal line in zone II).

(b) The second approach is to assume that a capillary pressure varies with
saturation. At the moment of invasion of the non-wetting fluid into a pore body, the
local capillary pressure is close to the (entry) capillary pressure of the pore throat
from which the fluid enters the pore body (figure 11). So, it is larger than the entry
capillary pressure of the pore body, which is associated with that of the inscribed
circle. As the interface moves into the pore body, it expands and its capillary pressure
decreases. We assume that the interface goes through the following stages.

(i) First, as it enters the pore body, its radius remains unchanged, equal to the
radius of the pore throat, rij (interface 1 in figure 11a). So, for the range sw

i �
1 − (2π/3)((rij/2Ri)

3), the local capillary pressure will be equal to the entry capillary
pressure of the pore throat; pc

i = pc
e,ij .

(ii) From this point on, the radius of interface increases. For a given radius of
curvature rci,1, the non-wetting fluid will be present within a truncated sphere as
shown in figure 11(b). Defining r̃ci,1 = rci,1/2Ri and r̃ij = rij/2Ri , sw

i can be calculated
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as follows:

sw
i = 1 − π

8

(
2

3
r̃c

3
i,1 − r̃c

2
i,1

√
r̃c

2
i,1 − r̃2

ij +
1

3

(
r̃c

2
i,1 − r̃2

ij

)3/2)
(A 6)

and pc
i = 2σ nw/rci,1.

(iii) At some point, the interface touches the sides of the pore body cube. Its radius
of curvature is then equal to Ri (interface 2 in figure 11a) and the wetting phase
saturation at this point is obtained from (A 6) by setting rci,1 = 1; it is sw

i = 1 −
(π/12) + (π/8)

√
1 − r̃2

ij − (π/24)(1 − r̃2
ij )

3/2. From this point on, the non-wetting phase

is in contact with the sidewalls of the pore body (relative to the pore throat) and it
continues moving into the pore body, at the constant radius, until it is fully inscribed
within the pore body. So, the wetting phase saturation reduces to 0.48. In this range,
the local capillary pressure remains constant equal to pc

i =2σ nw/Ri .
A plot of the local capillary pressure as a function of saturation for these two

approaches has been shown in figure 12. As can be observed, depending on the size
of the pore throat, the second approach can result in different pc

i –sw
i curves. With

the increase of ratio of pore throat to pore body radii, the curves from the two
approaches get closer to each other.

A.3. Local pc
i –sw

i relationship for the full range of saturation

Finally, to investigate the effect of these two assumptions on average behaviour of
the model during drainage, a number of simulations were performed, with viscosity
ratio set equal to 0.1 and the global pressure difference (P c

global ) set to 10 kPa. Change
of saturation with time and change of average capillary pressure with saturation are
shown in figure 13. As can be observed, the choice of local capillary pressure curve
for the range 0.48 � sw

i � 1 is really small. This is due to the fact that only a few
pores are partially filled in this range. As the simulation with the second approach
is more time-consuming (it requires smaller time steps), we have used the curve from
the first approach in all simulations in this paper.



Non-equilibrium capillarity effects in two-phase flow 67

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0

0.2 0.4 0.6 0.8 1.0

1.5 2.0 2.5 3.0 3.5 4.0
MillionsDimensionless time (–)

Assumption 2
Assumption 1

0

1
2
3
4
5
6
7

C
ap

il
la

ry
 p

re
ss

ur
e

(k
P

a)

S
at

ur
at

io
n 

(S
w

)

Saturation (Sw)

Figure 13. Effect of local pc
i –sw

i curve on the variation of saturation and capillary pressure

versus time (M = 0.1, P c
global = 10 kPa, r/R = 0.45).

The resulting pc
i –sw

i curve for the full range of saturation was fitted by the following
continuous function:

pc
i =

2σ nw

Ri

(
1 − exp

(
−6.83sw

i

)) . (A 7)

The radius of the curvature of corner interfaces is then approximated by the following
formula:

rci,1 =
2σ nw

pc
i

= Ri

(
1 − exp

(
−6.83sw

i

))
. (A 8)

Appendix B. The Anw
i –s

w
i relationship for a pore body

As mentioned earlier, the volume of pore throats is assumed to be negligible
compared with the volume of pore bodies. Thus, we neglected saturation of fluids in
the pore throats. Similarly, we have not considered in our calculations the interfacial
area present in pore throat corners.

There are two different types of capillary interfaces in a pore body: interfaces in
corners and edges, and interfaces covering the entrance of pore throats that have not
yet been invaded. These two types are referred to as ‘corner interfaces’ (arc menisci)
and ‘main terminal menisci’, respectively (Mason & Morrow 1987).

B.1. Corner interfaces

Given a pore body with inscribed radius Ri filled with non-wetting and wetting
phases, the non-wetting phase volume can be smaller or larger than the inscribed
sphere volume. If the non-wetting phase volume is smaller than or equal to the
volume of inscribed sphere, we assume that it occupies a sphere, whose radius is
Ri,eq = Ri((6/π)(1 − sw

i ))1/3. The corresponding interfacial area will be 4πR2
i,eq . If the

non-wetting phase volume is larger than or equal to the volume of inscribed sphere, the
wetting phase occupies geometries that were described in Appendix A. The interfaces
will have the mean radius given by (A 8). Therefore, the total interfacial area in
corners of a pore body will be equal to 4πR2

i,eq + 6πRi,eq(Ri − Ri,eq) for non-wetting
phase saturations larger than the inscribed sphere. The results are summarized as
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follows:

Ri,eq =

{
Ri

(
(6/π)

(
1 − sw

i

))1/3
, sw

i � 0.48,

Ri

(
1 − exp

(
− 6.83sw

i

))
, sw

i < 0.48,
(B 1)

Anw
i =

{
4πR2

i,eq , sw
i � 0.48,

4πR2
i,eq + 6πRi,eq(Ri − Ri,eq), sw

i < 0.48.
(B 2)

B.2. Main terminal menisci

Consider a pore body i, partially occupied by the non-wetting phase, and a pore
throat ij, which has not yet been invaded. The opening of the pore throat ij is thus
covered by a meniscus, to which we refer as ‘main terminal meniscus’. The geometry
of the main terminal meniscus is simply assumed to be a part of a sphere with a
radius of curvature Rdm equal to 2σ nw/pc

i similar to the interface within the pore
throat in figure 11(b). Thus, the area of the main terminal meniscus will be equal to

8π
(
σ nw/pc

i

)2
(1 −

√
1 − (rijp

c
i /2σ nw )2).
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